
Programming Models for
Blue Gene/L :

Charm++, AMPI and Applications

Laxmikant (Sanjay) Kale
Parallel Programming Laboratory

Dept. of Computer Science
University of Illinois at Urbana Champaign

http://charm.cs.uiuc.edu

August 14, 2002 BlueGene/L 2

Acknowlwdgements

• Graduate students including:
– Gengbin Zheng
– Orion Lawlor
– Milind Bhandarkar
– Arun Singla
– Josh Unger
– Terry Wilmarth
– Sameer Kumar

• Recent Funding:
– NSF (NGS: Frederica Darema)
– DOE (ASCI : Rocket Center)
– NIH (Molecular Dynamics)

August 14, 2002 BlueGene/L 3

Outline

• The virtualization model
– Charm++ and AMPI
– Virtualization: a silver bullet

• BG/L Program Development environment
– Emulation setup
– Simulation and Performance Prediction

• Applications using BG/L
– Scaling Issues
– Example: Molecular Dynamics

• Ongoing research

August 14, 2002 BlueGene/L 4

Technical Approach

• Seek optimal division of labor between “system” and programmer:

Specialization

MPI

HPF

A
utom

ation

Charm++

Expression

Scheduling

Mapping

Decomposition

Decomposition done by programmer, everything else automated

August 14, 2002 BlueGene/L 5

Object-based Decomposition

• Basic Idea:
– Divide the computation into a large number of pieces

• Independent of number of processors
• Typically larger than number of processors

– Let the system map objects to processors

• Old idea? G. Fox Book (’86?), DRMS (IBM), ..

• Our approach is “virtualization++”
–Language and runtime support for virtualization
–Exploitation of virtualization to the hilt

August 14, 2002 BlueGene/L 6

Virtualization: Object-based Parallelization

User View

System implementation

User is only concerned with interaction between objects (VPs)

August 14, 2002 BlueGene/L 7

Realizations: Charm++

• Charm++
– Parallel C++ with Data Driven Objects (Chares)
– Asynchronous method invocation

• Prioritized scheduling
– Object Arrays
– Object Groups:
– Information sharing abstractions: readonly, tables,..
– Mature, robust, portable (http://charm.cs.uiuc.edu)

August 14, 2002 BlueGene/L 8

Object Arrays

• A collection of data-driven objects
– With a single global name for the collection
– Each member addressed by an index

• [sparse] 1D, 2D, 3D, tree, string, ...
– Mapping of element objects to procS handled by the system

A[0] A[1] A[2] A[3] A[..]

User’s view

August 14, 2002 BlueGene/L 9

Object Arrays

• A collection of data-driven objects
– With a single global name for the collection
– Each member addressed by an index

• [sparse] 1D, 2D, 3D, tree, string, ...
– Mapping of element objects to procS handled by the system

A[0] A[1] A[2] A[3] A[..]

A[3]A[0]

User’s view

System
view

August 14, 2002 BlueGene/L 10

Object Arrays

• A collection of data-driven objects
– With a single global name for the collection
– Each member addressed by an index

• [sparse] 1D, 2D, 3D, tree, string, ...
– Mapping of element objects to procS handled by the system

A[0] A[1] A[2] A[3] A[..]

A[3]A[0]

User’s view

System
view

August 14, 2002 BlueGene/L 11

Comparison with MPI

• Advantage: Charm++
– Modules/Abstractions are centered on application data

structures,
• Not processors

– Several other…
• Advantage: MPI

– Highly popular, widely available, industry standard
– “Anthropomorphic” view of processor

• Many developers find this intuitive
• But mostly:

– There is no hope of weaning people away from MPI
– There is no need to choose between them!

August 14, 2002 BlueGene/L 12

Adaptive MPI

• A migration path for legacy MPI codes
• AMPI = MPI + Virtualization
• Uses Charm++ object arrays and migratable threads
• Minimal modifications to convert existing MPI programs

– Automated via AMPizer
• Based on Polaris Compiler Framework

• Bindings for
– C, C++, and Fortran90

August 14, 2002 BlueGene/L 13

AMPI:

7 MPI
processes

August 14, 2002 BlueGene/L 14

AMPI:

Real Processors

7 MPI
“processes”

Implemented
as virtual
processors
(user-level
migratable
threads)

August 14, 2002 BlueGene/L 15

II: Benefits of Virtualization

• Better Software Engineering
• Message Driven Execution
• Flexible and dynamic mapping to processors
• Principle of Persistence:

– Enables Runtime Optimizations
– Automatic Dynamic Load Balancing
– Communication Optimizations
– Other Runtime Optimizations

August 14, 2002 BlueGene/L 16

Modularization

• Logical Units decoupled from “Number of processors”
– E.G. Oct tree nodes for particle data
– No artificial restriction on the number of processors

• Cube of power of 2

• Modularity:
– Software engineering: cohesion and coupling
– MPI’s “are on the same processor” is a bad coupling principle
– Objects liberate you from that:

• E.G. Solid and fluid moldules in a rocket simulation

August 14, 2002 BlueGene/L 17

Rocket Simulation

• Large Collaboration headed Mike Heath
– DOE supported ASCI center

• Challenge:
– Multi-component code, with modules from independent

researchers
– MPI was common base

• AMPI: new wine in old bottle
– Easier to convert
– Can still run original codes on MPI, unchanged

August 14, 2002 BlueGene/L 18

Rocket simulation via virtual processors

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid
Rocface

Rocsolid

Rocface

Rocsolid

Rocface

Rocsolid
Rocface

Rocsolid

RocfloRocflo Rocflo Rocflo

August 14, 2002 BlueGene/L 19

AMPI and Roc*: Communication

Rocflo

Rocface

Rocsolid
Rocface

Rocsolid

Rocface

Rocsolid

Rocface

Rocsolid
Rocface

Rocsolid

RocfloRocflo Rocflo Rocflo

August 14, 2002 BlueGene/L 20

Message Driven Execution

Scheduler Scheduler

Message Q Message Q

Virtualization leads to Message Driven Execution

Which leads to Automatic Adaptive overlap of computation and
communication

August 14, 2002 BlueGene/L 21

Adaptive Overlap via Data-driven Objects

• Problem:
– Processors wait for too long at “receive” statements

• Routine communication optimizations in MPI
– Move sends up and receives down
– Sometimes. Use irecvs, but be careful

• With Data-driven objects
– Adaptive overlap of computation and communication
– No object or threads holds up the processor
– No need to guess which is likely to arrive first

August 14, 2002 BlueGene/L 22

Adaptive overlap and modules

SPMD and Message-Driven Modules
(From A. Gursoy, Simplified expression of message-driven programs and
quantification of their impact on performance, Ph.D Thesis, Apr 1994.)

August 14, 2002 BlueGene/L 23

Handling OS Jitter via MDE

• MDE encourages asynchrony
– Asynchronous reductions, for example
– Only data dependence should force synchronization

• One benefit:
– Consider an algorithm with N steps

• Each step has different load balance:Tij
• Loose dependence between steps

– (on neighbors, for example)

– Sum-of-max (MPI) vs max-of-sum (MDE)
• OS Jitter:

– Causes random processors to add delays in each step
– Handled Automatically by MDE

August 14, 2002 BlueGene/L 24

Virtualization/MDE leads to predictability

• Ability to predict:
– Which data is going to be needed and
– Which code will execute
– Based on the ready queue of object method invocations

• So, we can:
– Prefetch data accurately
– Prefetch code if needed
– Out-of-core execution
– Caches vs controllable SRAM

S S
Q Q

Salivating at the shared SRAM in BG/L

August 14, 2002 BlueGene/L 25

Flexible Dynamic Mapping to Processors

• The system can migrate objects between processors
– Vacate processor used by a parallel program
– Dealing with extraneous loads on shared workstations
– Shrink and Expand the set of processors used by an app

• Shrink from 1000 to 900 procs. Later expand to 1200.
• Adaptive job scheduling for better System utilization

– Adapt to speed difference between processors
• E.g. Cluster with 500 MHz and 1 Ghz processors

• Automatic checkpointing
– Checkpointing = migrate to disk!
– Restart on a different number of processors

August 14, 2002 BlueGene/L 26

Principle of Persistence

• Once the application is expressed in terms of
interacting objects:
– Object communication patterns and computational loads

tend to persist over time
– In spite of dynamic behavior

• Abrupt and large,but infrequent changes (eg:AMR)
• Slow and small changes (eg: particle migration)

• Parallel analog of principle of locality
– Heuristics, that holds for most CSE applications
– Learning / adaptive algorithms
– Adaptive Communication libraries
– Measurement based load balancing

August 14, 2002 BlueGene/L 27

Measurement Based Load Balancing

• Based on Principle of persistence
• Runtime instrumentation

– Measures communication volume and computation time

• Measurement based load balancers
– Use the instrumented data-base periodically to make new

decisions
– Many alternative strategies can use the database

• Centralized vs distributed
• Greedy improvements vs complete reassignments
• Taking communication into account
• Taking dependences into account (More complex)

August 14, 2002 BlueGene/L 28

Load balancer in action

0

5

10

15

20

25

30

35

40

45

50
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Iteration Number

N
um

b
e

r
o

f
It

e
ra

ti
o

n
s

P
er

 s
ec

o
n

d
Automatic Load Balancing in Crack Propagation

1. Elements
Added 3. Chunks

Migrated

2. Load
Balancer
Invoked

August 14, 2002 BlueGene/L 29

Optimizing for Communication Patterns

• The parallel-objects Runtime System can observe,
instrument, and measure communication patterns
– Communication is from/to objects, not processors
– Load balancers use this to optimize object placement
– Communication libraries can optimize

• By substituting most suitable algorithm for each
operation

• Learning at runtime
– E.g. Each to all individualized sends

• Performance depends on many runtime characteristics
• Library switches between different algorithms

V. Krishnan, MS Thesis, 1996

August 14, 2002 BlueGene/L 30

“Overhead” of Virtualization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of Chunks Per Processor

T
im

e
(S

ec
o

n
d

s)
 p

er
 It

er
at

io
n

Isn’t there significant overhead of virtualization?

No! Not in most cases.

August 14, 2002 BlueGene/L 31

Using Charm++/AMPI for BG/L

• How to develop any programming environment for
a machine that isn’t built yet

• Blue Gene/C emulator using charm++
– Completed last year
– Emulation runs on machines with hundreds of “normal”

processors

• Recently retargeted and tested for BG/L
• Charm++ on Blue Gene Emulator

August 14, 2002 BlueGene/L 32

Structure of the Emulators

Blue Gene/C
Low-level API

Charm++

Converse

Converse

Charm++

BG/C low level API

Charm++

August 14, 2002 BlueGene/L 33

Emulation on a Parallel Machine

Simulating (Host) Processor

BG/C Nodes

Hardware thread

August 14, 2002 BlueGene/L 34

Emulation efficiency

• How much time does it take to run an emulation?
– 8 Million processors being emulated on 100
– In addition, lower cache performance
– Lots of tiny messages

• On a Linux cluster, and Lemieux:
– Emulation shows good speedup

August 14, 2002 BlueGene/L 35

Emulation efficiency
Emulation Time on Linux Cluster

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

Num of processors

Ti
m

e
(S

ec
s)

1000 BG/C nodes
(10x10x10)

Each with 200
threads

(total of 200,000
user-level threads)

But Data is
preliminary, based on

one simulation

August 14, 2002 BlueGene/L 36

Emulator to Simulator

• Step 1: Coarse grained simulation
– Simulation: performance prediction capability
– Models contention for processor/thread
– Also models communication delay based on distance
– Doesn’t model memory access on chip, or network
– How to do this in spite of out-of-order message delivery?

• Rely on determinism of Charm++ programs
• Time stamped messages and threads
• Parallel time-stamp correction algorithm

August 14, 2002 BlueGene/L 37

Timestamp correction

• Basic execution:
– Timestamped messages

• Correction needed when:
– A message arrives with an earlier timestamp than other

messages “processed” already

• Determinism:
– Messages to Handlers or simple objects
– MPI style threads, without wildcard or irecvs
– Charm++ with dependence expressed via structured dagger

August 14, 2002 BlueGene/L 38

M8

M1 M7M6M5M4M3M2

RecvTime

Execution
TimeLine

Timestamps Correction

August 14, 2002 BlueGene/L 39

M8M1 M7M6M5M4M3M2

RecvTime

Execution
TimeLine

Timestamps Correction

August 14, 2002 BlueGene/L 40

M1 M7M6M5M4M3M2

RecvTime

Execution
TimeLine

M8

Execution
TimeLineM1 M7M6M5M4M3M2 M8

RecvTime

Correction Message

Timestamps Correction

August 14, 2002 BlueGene/L 41

M1 M7M6M5M4M3M2

RecvTime

Execution
TimeLine

Correction Message (M4)

M4

Correction Message (M4)

M4

M1 M7M4M3M2

RecvTime

Execution
TimeLineM5 M6

Correction Message

M1 M7M6M4 M3M2

RecvTime

Execution
TimeLineM5

Correction Message

Timestamps Correction

August 14, 2002 BlueGene/L 42

Performance of correction Algorithm

• Without correction
– 15 seconds to emulate a 18msec timstep
– 10x10x10 nodes with k threads each (200?)

• With correction
– Version 1: 42 minutes per step!
– Version 2:

• “Chase” and correct messages still in queues
• Optimize search for messages in the log data
• Currently at 30 secs per step

• Alternative algorithm:
– Trace-driven simulation

August 14, 2002 BlueGene/L 43

Emulator to Simulator

• Step 2: Add fine grained procesor simulation
– Sarita Adve: RSIM based simulation of a node

• SMP node simulation: completed
– Also: simulation of interconnection network
– Millions of thread units/caches to simulate in detail?

• Step 3: Hybrid simulation
– Instead: use detailed simulation to build model
– Drive coarse simulation using model behavior
– Further help from compiler and RTS

August 14, 2002 BlueGene/L 44

Modeling layers

Applications

Libraries/RTS

Proc. Architecture Network model

For each: need a detailed
simulation and a simpler

(e.g. table-driven)
“model”

And methods
for combining

them

August 14, 2002 BlueGene/L 45

Applications on the current system

• Using BG Charm++
• LeanMD:

– Research quality Molecular Dyanmics
– Version 0: only electrostatics + van der Vaal

• Simple AMR kernel
– Adaptive tree to generate millions of objects

• Each holding a 3D array
– Communication with “neighbors”

• Tree makes it harder to find nbrs, but Charm makes it easy

August 14, 2002 BlueGene/L 46

Performance Issues and Techniques

• Scaling to 64K/128K processors
– Communication

• Bandwidth use more important than processor overhead
• Locality:

– Global Synchronizations
• Costly, but not because it takes longer
• Rather, small “jitters” have a large impact
• Sum of Max vs Max of Sum

– Load imbalance important, but so is grainsize
– Critical paths

August 14, 2002 BlueGene/L 47

Parallelization Example:
Molecular Dynamics in NAMD

• Collection of [charged] atoms, with bonds
– Newtonian mechanics
– Thousands of atoms (1,000 - 500,000)
– 1 femtosecond time-step, millions needed!

• At each time-step
– Calculate forces on each atom

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Calculate velocities and advance positions
– Multiple Time Stepping : PME (3D FFT) every 4 steps

Collaboration with K. Schulten, R. Skeel, and coworkers

August 14, 2002 BlueGene/L 48

Traditional Approaches

• Replicated Data:
– All atom coordinates stored on each processor

• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute force matrix to processors
– Matrix is sparse, non uniform,
– C/C Ratio: sqrt(P)

August 14, 2002 BlueGene/L 49

Spatial Decomposition

•C/C ratio: O(1)

•However:

•Load Imbalance

•Limited Parallelism

August 14, 2002 BlueGene/L 50

Object Based Parallelization for MD:

Force Decomposition + Spatial Deomp.

•Now, we have many
objects to load balance:

–Each diamond can be
assigned to any proc.
– Number of diamonds
(3D):
–14·Number of Patches

August 14, 2002 BlueGene/L 51

Bond Forces

• Multiple types of forces:
– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!

• Instead, we do:
– Send to (7) upstream nbrs
– Each force calculated at one patch

B

CA

August 14, 2002 BlueGene/L 52

700
vps

192 +
144 vps

30,000 vps

August 14, 2002 BlueGene/L 53

NAMD performance using virtualization

• Written in Charm++
• Uses measurement based load balancing
• Object level performance feedback

– using “projections” tool for Charm++
– Identifies problems at source level easily
– Almost suggests fixes

• Attained unprecedented performance

August 14, 2002 BlueGene/L 54

PME parallelization

Impor4t
picture from
sc02 paper
(sindhura’s)

August 14, 2002 BlueGene/L 55

Performance: NAMD on Lemieux

Time (ms) Speedup GFLOPS
Procs Per Node Cut PME MTS Cut PME MTS Cut PME MTS

1 1 24890 29490 28080 1 1 1 0.494 0.434 0.48
128 4 207.4 249.3 234.6 119 118 119 59 51 57
256 4 105.5 135.5 121.9 236 217 230 116 94 110
512 4 55.4 72.9 63.8 448 404 440 221 175 211
510 3 54.8 69.5 63 454 424 445 224 184 213

1024 4 33.4 45.1 36.1 745 653 778 368 283 373
1023 3 29.8 38.7 33.9 835 762 829 412 331 397
1536 3 21.2 28.2 24.7 1175 1047 1137 580 454 545
1800 3 18.6 25.8 22.3 1340 1141 1261 661 495 605
2250 3 15.6 23.5 18.4 1599 1256 1527 789 545 733

ATPase: 320,000+ atoms including water

August 14, 2002 BlueGene/L 56

August 14, 2002 BlueGene/L 57

August 14, 2002 BlueGene/L 58

LeanMD for BG/L

• Need many more objects:
– Generalize hybrid decomposition scheme

• 1-away to k-away 2-away :
cubes are half the size.

August 14, 2002 BlueGene/L 59

5000
vps

76,000
vps

256,000 vps

August 14, 2002 BlueGene/L 60

Emulation Speedup on Lemieux

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900

Lemieux Processors

E
m

u
la

tio
n

 T
im

e

32000 Node BG/L running LeanMD.

Emulation time per timestep

August 14, 2002 BlueGene/L 61

Ongoing Research

• Load balancing
– Charm framework allows distributed and centralized
– Recent years, we focused on centralized

• Still ok for 3000 processors for NAMD
– Reverting back to older work on distributed balancing

• Need to handle locality of communication
– Topology sensitive placement

• Need to work with global information
– Approx global info
– Incomplete global info (only “neighborhood”)

• Achieving global effects by local action…

August 14, 2002 BlueGene/L 62

Communication Optimizations

• Identify distinct communication patterns
– Study different parallel algorithms for each
– Conditions under which an algorithm is suitable
– Incorporate algorithms and runtime monitoring into dynamic

libraries

• Fault Tolerance
– Much easier at object level: TMR, efficient variations
– However, checkpointing used to be such an efficient

alternative (low forward-path cost)
– Resurrect past research

August 14, 2002 BlueGene/L 63

Multiparadigm programming

• Idea
• Converse
• Paradigms aimed at:

– Charm++, MPI, AMPI, CRL,
– Frameworks: FEM, AMR, Multiblock, particle
– Other’s paradigms:

• HPF,
• Virtualized versions of GA, UPC??,..

August 14, 2002 BlueGene/L 64

Summary

• Virtualization as a magic bullet: Charm/AMPI
– Flexible and dynamic mapping to processors
– Message driven execution:

• Adaptive overlap, modularity, predictability
– Principle of persistence

• Measurement based load balancing,
• Adaptive communication libraries

• BG/L Emulator and Simulator
– Can run 128k proc. Program on current parallel m/cs
– Charm++ and LeanMD ported to BG/L
– Ongoing research in:

• Scalable load balancing, communication optimizations,
• Multiparadigm programming

More info:

http://charm.cs.uiuc.edu

